# 微积分作业代写calclulus代考| Extreme points: The complete story

my-assignmentexpert™ 微积分calculus作业代写，免费提交作业要求， 满意后付款，成绩80\%以下全额退款，安全省心无顾虑。专业硕 博写手团队，所有订单可靠准时，保证 100% 原创。my-assignmentexpert™， 最高质量的微积分calculus作业代写，服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面，考虑到同学们的经济条件，在保障代写质量的前提下，我们为客户提供最合理的价格。 由于economics作业种类很多，同时其中的大部分作业在字数上都没有具体要求，因此微积分calculus作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

my-assignmentexpert™ 为您的留学生涯保驾护航 在经济学作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微积分calculus代写服务。我们的专家在微积分calculus学 代写方面经验极为丰富，各种微积分calculus相关的作业也就用不着 说。

• 单变量微积分
• 多变量微积分
• 傅里叶级数
• 黎曼积分
• ODE
• 微分学

## 微积分作业代写calclulus代考|Remarks

• The difference between Definition $3.1$ and Definition $3.4$ lies in the set of points considered. In Definition $3.1$ only points in the immediate neighbourhood, $S_{r}(\boldsymbol{a})$, of $\boldsymbol{a}$ are considered, while in Definition $3.4$ all points in the domain, $D_{f}$, of the function are involved.
• Definition $3.4$ implies that a critical point, even if a point of local maximum or local minimum, need not be a point of absolute maximum or minimum.

Earlier we said that critical points are examples of extreme points. However, there are other types of extreme points which are not found using the gradient. These are

## 微积分作业代写calclulus代考|Optimization over compact domains

Recall our definition of a compact set (Definition 1.8): a set $\Omega \subseteq \mathbb{R}^{n}$ is said to be compact if it is closed and bounded.

For any function defined on a region $\Omega \subseteq D_{f}$ that is compact, we have the following very useful result.
Theorem $3.2$
$A$ continuous real-valued function defined on a compact region, $\Omega$, obtains an absolute maximum and an absolute minimum value.
A few comments on this theorem are warranted.
Firstly, it is not necessary that the region being considered is the function’s entire domain of definition, $D_{f}$, but it might be. The problem statement will usually specify this. If no region is given then the reader should assume the whole of $D_{f}$ is implied.

Secondly, by Theorem 1.2, a continuous function defined on a closed and bounded region is necessarily bounded. This means that $|f(\boldsymbol{x})|<K$ for some $K \in \mathbb{R}$ and for all $\boldsymbol{x}$ in that region. This simple result implies that we should expèct $f$ to exhibit an absoolutẻ minimum and an absolutẻ maximum. In fact, this is the only time we are guaranteed that absolute maximum and minimum points exist.

The reader should always bear in mind that a continuous function is not necessarily differentiable everywhere. A consequence of this is that singular points can exist. These should then be inspected separately to any critical points. Naturally, the appealing notion of a closed and finite domain means

that the domain boundary (boundary points) need also to be considered separately.
We illustrate Theorem $3.2$ in action with the following examples.

## 微积分作业代写calclulus代考|Remarks

• 定义的区别3.1和定义3.4在于所考虑的点集。在定义中3.1只在附近的点，小号r(一种)， 的一种被考虑，而在定义3.4域中的所有点，DF, 的功能都涉及。
• 定义3.4意味着一个临界点，即使是局部最大值或局部最小值，也不必是绝对最大值或最小值的点。