微积分作业代写calclulus代考| Vector-valued functions

微积分作业代写calclulus代考| Vector-valued functions

微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法

my-assignmentexpert™ 微积分calculus作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的微积分calculus作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于economics作业种类很多,同时其中的大部分作业在字数上都没有具体要求,因此微积分calculus作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在经济学作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微积分calculus代写服务。我们的专家在微积分calculus学 代写方面经验极为丰富,各种微积分calculus相关的作业也就用不着 说。

我们提供的econ代写服务范围广, 其中包括但不限于:

  • 单变量微积分
  • 多变量微积分
  • 傅里叶级数
  • 黎曼积分
  • ODE
  • 微分学
微积分作业代写calclulus代考

微积分作业代写calclulus代考|The most general case f : Rn −→ Rm→ Rm

Although applications arise in more general cases of $\boldsymbol{f}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, we derive no benefit by specializing any further. We can instead reflect on the parallels

that may be drawn between “projections” of a more general scenario and the special cases we have already discussed.

A differentiable vector function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ with components $f_{i}, i=$ $1,2,3, \ldots, m$, which are real-valued functions of $\boldsymbol{x}$, is a vector-valued function
$$
\boldsymbol{f}(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x}), f_{3}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)
$$
When we say that $\boldsymbol{x} \in \mathbb{R}^{n}$ is in the domain of $\boldsymbol{f}$, where $R_{f} \subset \mathbb{R}^{m}$, we mean that $\boldsymbol{x}$ is in the domain of each component, the scalar functions $f_{i}, i=1,2, \ldots, m$. Then if we can assume that each of the $f_{i}$ is continuous and has continuous partial derivatives, we can compute the gradient for each component,
$$
\nabla f_{i}(\boldsymbol{x})=\left(\frac{\partial f_{i}}{\partial x_{1}}, \ldots, \frac{\partial f_{i}}{\partial x_{n}}\right), i=1,2, \ldots, m .
$$
We have met the gradient in Section 2.E, where it was used to determine the rate of change of a scalar function in a specified direction. So, for instance, for the case $n=2$ and $m=1$, we had $z=f(x, y)$ describing a surface in $3 \mathrm{D}$ space, and the rate of change of $z$ at a point $\left(x_{0}, y_{0}\right)$ in the direction of unit vector $\boldsymbol{u}=(u, v)$ was given by
$$
D_{u} f\left(x_{0}, y_{0}\right)=\left.\nabla f\right|{0} \cdot \boldsymbol{u}=\left(\left.\frac{\partial f}{\partial x}\right|{0} \mathbf{i}+\left.\frac{\partial f}{\partial y}\right|{0} \mathbf{j}\right) \cdot(u \mathbf{i}+v \mathbf{j}), $$ or, in matrix notation, $$ D{u} f\left(x_{0}, y_{0}\right)=\left[\left.\left.\frac{\partial f}{\partial x}\right|{0} \frac{\partial f}{\partial y}\right|{0}\right]\left(\begin{array}{l}
u \
v
\end{array}\right) .
$$
With vector functions $\boldsymbol{f}(\boldsymbol{x})$ we have the potential to simultaneously find the rate of change of more that one scalar function using matrix multiplication. So for the case $n=2$ and $m=3$ we would have
$$
\boldsymbol{f}\left(x_{0}, y_{0}\right)=\left[\begin{array}{ll}
\left.\frac{\partial f_{1}}{\partial x}\right|{0} & \left.\frac{\partial f{1}}{\partial y}\right|{0} \ \left.\frac{\partial f{2}}{\partial x}\right|{0} & \left.\frac{\partial f{2}}{\partial y}\right|{0} \ \left.\frac{\partial f{3}}{\partial x}\right|{0} & \left.\frac{\partial f{3}}{\partial y}\right|_{0}
\end{array}\right]\left(\begin{array}{c}
u \
v
\end{array}\right)
$$
The $3 \times 2$ matrix on the right is an example of a Jacobian matrix. The Jacobian lies at the heart of every generalization of single-variable calculus to higher dimensions.

微积分作业代写calclulus代考|Remarks

  • Before continuing, the reader might find it useful to revisit the discussions on coordinate systems and visualization of surfaces in Sections 1.D and 1.E.
  • If we keep $u=u_{0}$ fixed we get $\boldsymbol{r}=\boldsymbol{r}\left(u_{0}, v\right)$, a vector function of one variable, $v$ (Figure 5.9). That is, restricting the variable $u$ results in a curve on $S$ called the constant $u$ curve. By the foregoing section this curve has a tangent vector given by
    $$
    \boldsymbol{r}{v}^{\prime}\left(u{0}, v\right)=\frac{\partial \boldsymbol{r}}{\partial v}\left(u_{0}, v\right)=\left(\frac{\partial x}{\partial v}\left(u_{0}, v\right), \frac{\partial y}{\partial v}\left(u_{0}, v\right), \frac{\partial z}{\partial v}\left(u_{0}, v\right)\right)
    $$
  • Similarly, if we keep $v=v_{0}$ fixed we get $\boldsymbol{r}=\boldsymbol{r}\left(u, v_{0}\right)$, a vector function of the single variable $u$. This too is a curve on $S$, called the constant $v$ curve. Analogously, this curve has a tangent vector given by
    $$
    \boldsymbol{r}{u}^{\prime}\left(u, v{0}\right)=\frac{\partial \boldsymbol{r}}{\partial u}\left(u, v_{0}\right)=\left(\frac{\partial x}{\partial u}\left(u, v_{0}\right), \frac{\partial y}{\partial u}\left(u, v_{0}\right), \frac{\partial z}{\partial u}\left(u, v_{0}\right)\right)
    $$
  • If $\boldsymbol{r}{u}^{\prime}\left(u{0}, v_{0}\right) \times \boldsymbol{r}{v}^{\prime}\left(u{0}, v_{0}\right) \neq 0$, which is the case for independent variables, then $\boldsymbol{r}{u}^{\prime} \times \boldsymbol{r}{v}^{\prime}$ is a vector normal to $S$ and normal to the tangent plane to $S$ (at the point $r\left(u_{0}, v_{0}\right)$ ) spanned by the vectors $r_{u}^{\prime}\left(u_{0}, v_{0}\right)$ and $\boldsymbol{r}{v}^{\prime}\left(u{0}, v_{0}\right)$.
微积分作业代写calclulus代考| Vector-valued functions

微积分作业代写calclulus代考|The most general case f : Rn −→ Rm→ Rm

虽然应用程序出现在更一般的情况下F:Rn⟶R米,我们不会通过进一步专业化获得任何好处。相反,我们可以反思相似之处

这可以在更一般情况的“预测”和我们已经讨论过的特殊情况之间得出。

一个可微的向量函数F:Rn⟶R米带组件F一世,一世= 1,2,3,…,米,它们是的实值函数X, 是向量值函数
F(X)=(F1(X),F2(X),F3(X),…,F米(X))
当我们这么说X∈Rn是在领域F, 在哪里RF⊂R米, 我们的意思是X在每个组件的域中,标量函数F一世,一世=1,2,…,米. 那么如果我们可以假设每个F一世是连续的并且具有连续的偏导数,我们可以计算每个分量的梯度,
∇F一世(X)=(∂F一世∂X1,…,∂F一世∂Xn),一世=1,2,…,米.
我们在第 2.E 节中遇到了梯度,它用于确定标量函数在指定方向上的变化率。因此,例如,对于这种情况n=2和米=1, 我们有和=F(X,和)描述一个表面3D空间和变化率和在某一点(X0,和0)在单位向量的方向你=(你,v)由
D你F(X0,和0)=∇F|0⋅你=(∂F∂X|0一世+∂F∂和|0j)⋅(你一世+vj),或者,在矩阵表示法中,D你F(X0,和0)=[∂F∂X|0∂F∂和|0](你 v).
带矢量函数F(X)我们有可能使用矩阵乘法同时找到多个标量函数的变化率。所以对于本案n=2和米=3我们会有
F(X0,和0)=[∂F1∂X|0∂F1∂和|0 ∂F2∂X|0∂F2∂和|0 ∂F3∂X|0∂F3∂和|0](你 v)
这3×2右边的矩阵是雅可比矩阵的一个例子。雅可比矩阵是单变量微积分向更高维度的每一次推广的核心。

微积分作业代写calclulus代考|Remarks

  • 在继续之前,读者可能会发现重温第 1.D 节和第 1.E 节中关于坐标系和表面可视化的讨论很有用。
  • 如果我们保持你=你0固定我们得到r=r(你0,v),一个变量的向量函数,v(图 5.9)。也就是限制变量你结果是一条曲线小号称为常数你曲线。通过前面的部分,这条曲线的切向量由下式给出
    rv′(你0,v)=∂r∂v(你0,v)=(∂X∂v(你0,v),∂和∂v(你0,v),∂和∂v(你0,v))
  • 同样,如果我们保持v=v0固定我们得到r=r(你,v0), 单变量的向量函数你. 这也是一条曲线小号,称为常数v曲线。类似地,这条曲线的切向量由下式给出
    r你′(你,v0)=∂r∂你(你,v0)=(∂X∂你(你,v0),∂和∂你(你,v0),∂和∂你(你,v0))
  • 如果r你′(你0,v0)×rv′(你0,v0)≠0,对于自变量就是这种情况,那么r你′×rv′是一个垂直于小号并垂直于切平面小号(此时r(你0,v0)) 由向量跨越r你′(你0,v0)和rv′(你0,v0).
微积分作业代写calclulus代考| Vector-valued functions
微积分作业代写calclulus代考

微积分作业代写calclulus代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

组合数学代考

统计作业代写

集合论数理逻辑代写案例

凸优化代写

统计exam代考