简单的说,学好微积分(数学分析)是一个毁灭自己的先天直觉然后重新塑造一个后天直觉。
转变思维永远不是简单,但是不转变,贪图一时的捷径只是饮鸩止渴罢了。高中的时候,我一个同学很背单词的时候喜欢用汉字去拼那些单词的发音,还喜欢学各种解题技巧,这个时候我和他的成绩是一样的。
国外的老师较为看重学生homework的完成情况,对于同学们来说,完成一门科目作业并获得不错的成绩是尤为重要的事情。但对于不少同学来说,在自身英语说存在局限的情况下,当数学基础较为薄弱时,微积分作业的难度一下子就提升了,很难独立完成微积分作业。Calculus-do™提供的专业微积分代写能为大家解决所有的学术困扰,我们不仅会帮大家完成作业,还提供相应的数学知识辅导课程,以此来提高同学们学习能力。
我们提供的econ代写服务范围广, 其中包括但不限于:
- 单变量微积分
- 多变量微积分
- 傅里叶级数
- 黎曼积分
- ODE
- 微分学

微积分网课代修|常微分方程代写Ordinary Differential Equation代考|Reparametrization of Time
Suppose that $U$ is an open set in $\mathbb{R}^{n}, f: U \rightarrow \mathbb{R}^{n}$ is a smooth function, and $g: U \rightarrow \mathbb{R}$ is a positive smooth function. What is the relationship among the solutions of the differential equations
$$
\begin{aligned}
\dot{x} &=f(x), \
\dot{x} &=g(x) f(x) ?
\end{aligned}
$$
The vector fields defined by $f$ and $g f$ have the same direction at each point in $U$, only their lengths are different. Thus, by our geometric interpretation of autonomous differential equations, it is intuitively clear that the differential equations (1.10) and (1.11) have the same phase portraits in $U$. This fact is a corollary of the next proposition.
Proposition 1.14. If $J \subset \mathbb{R}$ is an open interval containing the origin and $\gamma: J \rightarrow \mathbb{R}^{n}$ is a solution of the differential equation (1.10) with $\gamma(0)=$ $x_{0} \in U$, then the function $B: J \rightarrow \mathbb{R}$ given by
$$
B(t)=\int_{0}^{t} \frac{1}{g(\gamma(s))} d s
$$
is invertible on its range $K \subseteq \mathbb{R}$. If $\rho: K \rightarrow J$ is the inverse of $B$, then the identity
$$
\rho^{\prime}(t)=g(\gamma(\rho(t))
$$
holds for all $t \in K$, and the function $\sigma: K \rightarrow \mathbb{R}^{n}$ given by $\sigma(t)=\gamma(\rho(t))$ is the solution of the differential equation (1.11) with initial condition $\sigma(0)=$ $x_{0}$.
Proof. The function $s \mapsto 1 / g(\gamma(s))$ is continuous on $J$. So $B$ is defined on $J$ and its derivative is everywhere positive. Thus, $B$ is invertible on its range. If $\rho$ is its inverse, then
$$
\rho^{\prime}(t)=\frac{1}{B^{\prime}(\rho(t))}=g(\gamma(\rho(t)))
$$
and
$$
\sigma^{\prime}(t)=\rho^{\prime}(t) \gamma^{\prime}(\rho(t))=g(\gamma(\rho(t)) f(\gamma(\rho(t))=g(\sigma(t)) f(\sigma(t))
$$
微积分网课代修|常微分方程代写Ordinary Differential Equation代考|Stability and Linearization
Rest points and periodic orbits correspond to very special solutions of autonomous differential equations. However, in the applications these are often the most important orbits. In particular, common engineering practice is to run a process in “steady state.” If the process does not stay near the steady state after a small disturbance, then the control engineer will have to face a difficult problem. We will not solve the control problem here, but we will introduce the mathematical definition of stability and the classic methods that can be used to determine the stability of rest points and periodic orbits.
The concept of Lyapunov stability is meant to capture the intuitive notion of stability-an orbit is stable if solutions that start nearby stay nearby. To give the formal definition, let us consider the autonomous differential equation
$$
\dot{x}=f(x)
$$
defined on an open set $U \subset \mathbb{R}^{n}$ and its flow $\phi_{t}$.

微积分网课代修|常微分方程代写Ordinary Differential Equation代考|Reparametrization of Time
假设 $U$ 是一个开集 $\mathbb{R}^{n}, f: U \rightarrow \mathbb{R}^{n}$ 是一个平滑函数,并且 $g: U \rightarrow \mathbb{R}$ 是一个正平滑 函数。微分方程的解之间有什么关系
$$
\dot{x}=f(x), \dot{x} \quad=g(x) f(x) ?
$$
向量场定义为 $f$ 和 $g f$ 在每个点都有相同的方向 $U$ ,只是它们的长度不同。因此,通过我 们对自治微分方程的几何解释,很明显微分方程 (1.10) 和 (1.11) 在 $U$. 这个事实是下 一个命题的推论。
提案 1.14。如果 $J \subset \mathbb{R}$ 是一个包含原点和的开区间 $\gamma: J \rightarrow \mathbb{R}^{n}$ 是微分方程 (1.10) 的 解 $\gamma(0)=x_{0} \in U$ ,那么函数 $B: J \rightarrow \mathbb{R}$ 由
$$
B(t)=\int_{0}^{t} \frac{1}{g(\gamma(s))} d s
$$
在其范围内可逆 $K \subseteq \mathbb{R}$. 如果 $\rho: K \rightarrow J$ 是的倒数 $B$ ,那么身份
$$
\rho^{\prime}(t)=g(\gamma(\rho(t))
$$
适用于所有人 $t \in K$ ,和函数 $\sigma: K \rightarrow \mathbb{R}^{n}$ 由 $\sigma(t)=\gamma(\rho(t))$ 是具有初始条件的微分 方程 (1.11) 的解 $\sigma(0)=x_{0}$.
证明。功能 $s \mapsto 1 / g(\gamma(s))$ 是连续的 $J$. 所以 $B$ 定义在 $J$ 它的导数处处为正。因此, $B$ 在其范围内可逆。如果 $\rho$ 是它的倒数,那么
$$
\rho^{\prime}(t)=\frac{1}{B^{\prime}(\rho(t))}=g(\gamma(\rho(t)))
$$
和
$$
\sigma^{\prime}(t)=\rho^{\prime}(t) \gamma^{\prime}(\rho(t))=g(\gamma(\rho(t)) f(\gamma(\rho(t))=g(\sigma(t)) f(\sigma(t))
$$
微积分网课代修|常微分方程代写Ordinary Differential Equation代 考 Stability and Linearization
静止点和周期轨道对应于自治微分方程的非常特殊的解。然而,在应用中,这些通常是 最重要的轨道。特别是,常见的工程实践是在“稳定状态”下运行一个过程。如果过程在 小幅扰动后没有停留在稳定状态附近,那么控制工程师将不得不面对一个难题。我们不 会在这里解决控制问题,但我们会介绍稳定性的数学定义以及可以用来确定静止点和周 期轨道稳定性的经典方法。
Lyapunov 稳定性的概念是为了捕捉直观的稳定性概念一一如果从附近开始的解保持在 附近,那么轨道就是稳定的。为了给出正式的定义,让我们考虑自治微分方程
$$
\dot{x}=f(x)
$$
在开集上定义 $U \subset \mathbb{R}^{n}$ 及其流量 $\phi_{t}$.


微积分网课代修|常微分方程代写Ordinary Differential Equation代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。