随机微积分作业代写stochastic calculus代考| CONDITIONING

随机微积分作业代写stochastic calculus代考| CONDITIONING

随机微积分(stochastic calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法

my-assignmentexpert™ 随机微积分stochastic calculus作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的随机微积分stochastic calculus作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于随机微积分stochastic calculus作业种类很多,难度波动比较大,同时其中的大部分作业在字数上都没有具体要求,因此随机微积分stochastic calculus作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在经济学作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微积分calculus代写服务。我们的专家在随机微积分stochastic calculus 代写方面经验极为丰富,各种随机微积分stochastic calculus相关的作业也就用不着 说。

我们提供的随机微积分stochastic calculus代写服务范围广, 其中包括但不限于:

  • 随机偏微分方程
  • 随机控制
  • Ito积分
  • black-Scholes-Merton option pricing formula
  • Fokker–Planck equation
  • 布朗运动 Brownian motion
随机微积分作业代写stochastic calculus代考

微积分作业代写calclulus代考|a Sigma fields, information and conditional expectation

2.a.0. (a) If $X \in \mathcal{E}(P)$, then $1_{A} X \in \mathcal{E}(P)$, for all sets $A \in \mathcal{F}$.
(b) If $X \in \mathcal{E}(P)$ and $\alpha \in R$, then $\alpha X \in \mathcal{E}(P)$.
(c) If $X_{1}, X_{2} \in \mathcal{E}(P)$ and $E\left(X_{1}\right)+E\left(X_{2}\right)$ is defined, then $X_{1}+X_{2} \in \mathcal{E}(P)$.
Proof. We show only (c). We may assume that $E\left(X_{1}\right) \leq E\left(X_{2}\right)$. If $E\left(X_{1}\right)+E\left(X_{2}\right)$ is defined, then $E\left(X_{1}\right)>-\infty$ or $E\left(X_{2}\right)<\infty$. Let us assume that $E\left(X_{1}\right)>-\infty$ and so $E\left(X_{2}\right)>-\infty$, the other case being similar. Then $X_{1}, X_{2}>-\infty, P$-as. and hence $X_{1}+X_{2}$ is defined $P$-as. Moreover $E\left(X_{1}^{-}\right), E\left(X_{2}^{-}\right)<\infty$ and, since $\left(X_{1}+X_{2}\right)^{-} \leq X_{1}^{-}+X_{2}^{-}$, also $E\left(\left(X_{1}+X_{2}\right)^{-}\right)<\infty$. Thus $X_{1}+X_{2} \in \mathcal{E}(P)$.

微积分作业代写calclulus代考|Conditional expectation

2.b.0. A conditional expectation of $X$ given $\mathcal{G}$ exists and is $P$-as. uniquely determined. Henceforth it will be denoted $E(X \mid \mathcal{G})$ or $E_{\mathcal{G}}(X)$.

Proof. Uniqueness. Let $Z_{1}, Z_{2}$ be conditional expectations of $X$ given $\mathcal{G}$. Then $E\left(Z_{1} 1_{A}\right)=E\left(X 1_{A}\right)=E\left(Z_{2} 1_{A}\right)$, for all sets $A \in \mathcal{G}$. It will suffice to show that $P\left(Z_{1}0$. Then $E\left(Z_{1} 1_{A}\right) \leq \alpha P(A)<$ $\beta P(A) \leq E\left(Z_{2} 1_{A}\right)$, a contradiction.

Existence. (i) Assume first that $X \in L^{2}(P)$ and let $L^{2}(\mathcal{G}, P)$ be the space of all equivalence classes in $L^{2}(P)$ containing a $\mathcal{G}$-measurable representative. We claim

that the subspace $L^{2}(\mathcal{G}, P) \subseteq L^{2}(P)$ is closed. Indeed, let $Y_{n} \in L^{2}(\mathcal{G}, P), Y \in L^{2}(P)$ and assume that $Y_{n} \rightarrow Y$ in $L^{2}(P)$. Passing to a suitable subsequence of $Y_{n}$ if necessary, we may assume that $Y_{n} \rightarrow Y, P$-as. Set $\tilde{Y}=\lim \sup {n} Y{n}$. Then $\tilde{Y}$ is $\mathcal{G}$-measurable and $\tilde{Y}=Y, P$-as. This shows that $Y \in L^{2}(\mathcal{G}, P)$.

Let $Z$ be the orthogonal projection of $X$ onto $L^{2}(\mathcal{G}, P)$. Then $X=Z+U$, where $U \in L^{2}(\mathcal{G}, P)^{\perp}$, that is $E(U V)=0$, for all $V \in L^{2}(\mathcal{G}, P)$, especially $E\left(U 1_{A}\right)=0$, for all $A \in \mathcal{G}$. This implies that $E\left(X 1_{A}\right)=E\left(Z 1_{A}\right)$, for all $A \in \mathcal{G}$, and consequently $Z$ is a conditional expectation for $X$ given $\mathcal{G}$.
(ii) Assume now that $X \geq 0$ and let, for each $n \geq 1, Z_{n}$ be a conditional expectation of $X \wedge n \in L^{2}(P)$ given $\mathcal{G}$. Let $n \geq 1$. Then $E\left(Z_{n} 1_{A}\right)=E\left((X \wedge n) 1_{A}\right) \leq$ $E\left((X \wedge(n+1)) 1_{A}\right)=E\left(Z_{n+1} 1_{A}\right)$, for all sets $A \in \mathcal{G}$, and this combined with the $\mathcal{G}$-measurability of $Z_{n}, Z_{n+1}$ shows that $Z_{n} \leq Z_{n+1}, P$-as. (2.a.1.(a)). Set $Z=\limsup {n} Z{n}$. Then $Z \geq 0$ is $\mathcal{G}$-measurable and $Z_{n} \uparrow Z, P$-as. Let $A \in \mathcal{G}$. For each $n \geq 1$ we have $E\left(Z_{n} 1_{A}\right)=E\left((X \wedge n) 1_{A}\right)$ and letting $n \uparrow \infty$ it follows that $E\left(Z 1_{A}\right)=E\left(X 1_{A}\right)$, by monotone convergence. Thus $Z$ is a conditional expectation of $X$ given $\mathcal{G}$.
(iii) Finally, if $E(X)$ exists, let $Z_{1}, Z_{2}$ be conditional expectations of $X^{+}, X^{-}$given $\mathcal{G}$ respectively. Then $Z_{1}, Z_{2} \geq 0, E\left(Z_{1} 1_{A}\right)=E\left(X^{+} 1_{A}\right)$ and $E\left(Z_{2} 1_{A}\right)=E\left(X^{-} 1_{A}\right)$, for all sets $A \in \mathcal{G}$. Letting $A=\Omega$ we see that $E\left(Z_{1}\right)<\infty$ or $E\left(Z_{2}\right)<\infty$ and consequently the event $D=\left[Z_{1}<\infty\right] \cup\left[Z_{2}<\infty\right]$ has probability one. Clearly $D \in \mathcal{G}$. Thus the random variable $Z=1_{D}\left(Z_{1}-Z_{2}\right)$ is defined everywhere and $\mathcal{G}$-measurable. We have $Z^{+} \leq Z_{1}$ and $Z^{-} \leq Z_{2}$ and consequently $E\left(Z^{+}\right)<\infty$ or $E\left(Z^{-}\right)<\infty$, that is, $E(Z)$ exists. For each set $A \in \mathcal{G}$ we have $E\left(Z 1_{A}\right)=$ $E\left(Z_{1} 1_{A \cap D}\right)-E\left(Z_{2} 1_{A \cap D}\right)=E\left(X^{+} 1_{A \cap D}\right)-E\left(X^{-} 1_{A \cap D}\right)=E\left(X 1_{A \cap D}\right)=E\left(X 1_{A}\right) .$
Thus $Z$ is a conditional expectation of $X$ given $\mathcal{G}$.
Remark. By the very definition of the conditional expectation $E_{\mathcal{G}}(X)$ we have $E(X)=E\left(E_{\mathcal{G}}(X)\right)$, a fact often referred to as the double expectation theorem. Conditioning on the sub- $\sigma$-field $\mathcal{G}$ before evaluating the expectation $E(X)$ is a technique frequently applied in probability theory. Let us now consider some examples of conditional expectations. Throughout it is assumed that $X \in \mathcal{E}(P)$.

随机微积分作业代写stochastic calculus代考| CONDITIONING

微积分作业代写calclulus代考|a Sigma fields, information and conditional expectation

2.a.0。(a) 如果X∈和(磷), 然后1一种X∈和(磷), 对于所有集合一种∈F.
(b) 如果X∈和(磷)和一种∈R, 然后一种X∈和(磷).
(c) 如果X1,X2∈和(磷)和和(X1)+和(X2)被定义,那么X1+X2∈和(磷).
证明。我们只显示(c)。我们可以假设和(X1)≤和(X2). 如果和(X1)+和(X2)被定义,那么和(X1)>−∞要么和(X2)<∞. 让我们假设和(X1)>−∞所以和(X2)>−∞,其他情况类似。然后X1,X2>−∞,磷-作为。因此X1+X2被定义为磷-作为。而且和(X1−),和(X2−)<∞并且,因为(X1+X2)−≤X1−+X2−, 还和((X1+X2)−)<∞. 因此X1+X2∈和(磷).

微积分作业代写calclulus代考|Conditional expectation

2.b.0。有条件的期望X给定G存在并且是磷-作为。唯一确定的。今后将表示和(X∣G)要么和G(X).

证明。独特性。让和1,和2成为有条件的期望X给定G. 然后和(和11一种)=和(X1一种)=和(和21一种), 对于所有集合一种∈G. 足以证明P\左(Z_{1}0P\左(Z_{1}0. 然后和(和11一种)≤一种磷(一种)< b磷(一种)≤和(和21一种),矛盾。

存在。(i) 首先假设X∈一世2(磷)然后让一世2(G,磷)是所有等价类的空间一世2(磷)包含一个G- 可衡量的代表。我们声称

那个子空间一世2(G,磷)⊆一世2(磷)已经关闭。确实,让和n∈一世2(G,磷),和∈一世2(磷)并假设和n→和在一世2(磷). 传递给合适的子序列和n如有必要,我们可以假设和n→和,磷-作为。设置 $\tilde{Y}=\lim \sup {n} Y {n}.吨H和n\波浪号{Y}一世s\数学{G}−米和一种s你r一种b一世和一种nd\波浪号{Y}=Y, P−一种s.吨H一世ssH○在s吨H一种吨Y \in L^{2}(\mathcal{G}, P)$。

让和是的正交投影X到一世2(G,磷). 然后X=和+ü, 在哪里ü∈一世2(G,磷)⊥, 那是和(ü五)=0, 对所有人五∈一世2(G,磷), 尤其和(ü1一种)=0, 对所有人一种∈G. 这意味着和(X1一种)=和(和1一种), 对所有人一种∈G, 因此和是一个条件期望X给定G.
(ii) 现在假设X≥0并让,对于每个n≥1,和n成为有条件的期望X∧n∈一世2(磷)给定G. 让n≥1. 然后和(和n1一种)=和((X∧n)1一种)≤ 和((X∧(n+1))1一种)=和(和n+11一种), 对于所有集合一种∈G,这与G- 可测量性和n,和n+1表明和n≤和n+1,磷-作为。(2.a.1.(a))。设置 $Z=\limsup {n} Z {n}.吨H和nZ\geq 0一世s\数学{G}−米和一种s你r一种b一世和一种ndZ_ {n} \ uparrow Z, P−一种s.一世和吨一个 \in \mathcal{G}.F○r和一种CHn \ geq 1在和H一种v和E\left(Z_{n} 1_{A}\right)=E\left((X \wedge n) 1_{A}\right)一种nd一世和吨吨一世nGn \uparrow \infty一世吨F○一世一世○在s吨H一种吨E\left(Z 1_{A}\right)=E\left(X 1_{A}\right),b和米○n○吨○n和C○nv和rG和nC和.吨H你s和一世s一种C○nd一世吨一世○n一种一世和Xp和C吨一种吨一世○n○FXG一世v和n\数学{G}.(一世一世一世)F一世n一种一世一世和,一世F前任的)和X一世s吨s,一世和吨Z_{1},Z_{2}b和C○nd一世吨一世○n一种一世和Xp和C吨一种吨一世○ns○FX^{+}, X^{-}G一世v和n\数学{G}r和sp和C吨一世v和一世和.吨H和nZ_{1}, Z_{2} \geq 0, E\left(Z_{1} 1_{A}\right)=E\left(X^{+} 1_{A}\right)一种ndE\left(Z_{2} 1_{A}\right)=E\left(X^{-} 1_{A}\right),F○r一种一世一世s和吨s一个 \in \mathcal{G}.一世和吨吨一世nGA = \ 欧米茄在和s和和吨H一种吨E\left(Z_{1}\right)<\infty○rE\left(Z_{2}\right)<\infty一种ndC○ns和q你和n吨一世和吨H和和v和n吨D=\left[Z_{1}<\infty\right] \cup\left[Z_{2}<\infty\right]H一种spr○b一种b一世一世一世吨和○n和.C一世和一种r一世和D \in \mathcal{G}.吨H你s吨H和r一种nd○米v一种r一世一种b一世和Z=1_{D}\left(Z_{1}-Z_{2}\right)一世sd和F一世n和d和v和r和在H和r和一种nd\数学{G}−米和一种s你r一种b一世和.在和H一种v和Z ^ {+} \ leq Z_ {1}一种ndZ ^ {-} \ leq Z_ {2}一种ndC○ns和q你和n吨一世和E\left(Z^{+}\right)<\infty○rE\left(Z^{-}\right)<\infty,吨H一种吨一世s,E (Z)和X一世s吨s.F○r和一种CHs和吨一个 \in \mathcal{G}在和H一种v和E\left(Z 1_{A}\right)=E\left(Z_{1} 1_{A \cap D}\right)-E\left(Z_{2} 1_{A \cap D}\right)=E\left(X^{+} 1_{A \cap D}\right)-E\left(X^{-} 1_{A \cap D}\right)=E\left(X 1_{A \cap D}\right)=E\left(X 1_ {A}\右)。吨H你s和一世s一种C○nd一世吨一世○n一种一世和Xp和C吨一种吨一世○n○FXG一世v和n\数学{G}.R和米一种r到.乙和吨H和v和r和d和F一世n一世吨一世○n○F吨H和C○nd一世吨一世○n一种一世和Xp和C吨一种吨一世○nE_{\mathcal{G}}(X)在和H一种v和E(X)=E\left(E_{\mathcal{G}}(X)\right),一种F一种C吨○F吨和nr和F和rr和d吨○一种s吨H和d○你b一世和和Xp和C吨一种吨一世○n吨H和○r和米.C○nd一世吨一世○n一世nG○n吨H和s你b−\西格玛−F一世和一世d\数学{G}b和F○r和和v一种一世你一种吨一世nG吨H和和Xp和C吨一种吨一世○n前任的)一世s一种吨和CHn一世q你和Fr和q你和n吨一世和一种pp一世一世和d一世npr○b一种b一世一世一世吨和吨H和○r和.一世和吨你sn○在C○ns一世d和rs○米和和X一种米p一世和s○FC○nd一世吨一世○n一种一世和Xp和C吨一种吨一世○ns.吨Hr○你GH○你吨一世吨一世s一种ss你米和d吨H一种吨X \in \mathcal{E}(P)$。

随机微积分作业代写stochastic calculus代考| CONDITIONING
微积分作业代写calclulus代考

微积分作业代写calclulus代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

组合数学代考

统计作业代写

集合论数理逻辑代写案例

凸优化代写

统计exam代考