随机微积分作业代写stochastic calculus代考| CONTINUOUS TIME MARTINGALES

随机微积分(stochastic calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法

my-assignmentexpert™ 随机微积分stochastic calculus作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的随机微积分stochastic calculus作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于随机微积分stochastic calculus作业种类很多,难度波动比较大,同时其中的大部分作业在字数上都没有具体要求,因此随机微积分stochastic calculus作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在经济学作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微积分calculus代写服务。我们的专家在随机微积分stochastic calculus 代写方面经验极为丰富,各种随机微积分stochastic calculus相关的作业也就用不着 说。

我们提供的随机微积分stochastic calculus代写服务范围广, 其中包括但不限于:

  • 随机偏微分方程
  • 随机控制
  • Ito积分
  • black-Scholes-Merton option pricing formula
  • Fokker–Planck equation
  • 布朗运动 Brownian motion
随机微积分作业代写stochastic calculus代考

微积分作业代写calclulus代考|Filtration, optional times, sampling.gue integrals

7.a.0 Assumption. The probability space $(\Omega, \mathcal{F}, P)$ is complete and the filtration $\left(\mathcal{F}{t}\right){t \geq 0}$ on $(\Omega, \mathcal{F}, P)$ right continuous and augmented.

Augmentation eliminates measurability problems on null sets. Let $X=\left(X_{t}\right), Y=$ $\left(Y_{t}\right), X(n)=\left(X_{t}(n)\right)$ be stochastic processes on $(\Omega, \mathcal{F}, P)$ indexed by $\mathcal{T}=[0, \infty)$ and $t \geq 0$. If $X_{t}$ is $\mathcal{F}{t}$-measurable and $Y{t}=X_{t}, P_{\text {-as. }}$, then $Y_{t}$ is $\mathcal{F}{t}$-measurable. Likewise, if $X{t}(n)$ is $\mathcal{F}{t}$-measurable, for all $n \geq 1$, and $X{t}(n) \rightarrow X_{t}, P$-as., as $n \uparrow \infty$, then $X_{t}$ is $\mathcal{F}{t}$-measurable. If $\omega \in \Omega$, the function $$ t \in[0, \infty) \mapsto X{t}(\omega) \in \bar{R}
$$
is called the path of $X$ in state $\omega$. The process $X$ is called (right, left) continuous if $X$ is $\left(\mathcal{F}{t}\right)$-adapted and $P$-ae. path of $X$ is finitely valued and (right, left) continuous. Let us call the processes $X, Y$ versions of each other and write $X=Y$ if they satisfy $$ X{t}=Y_{t}, \quad P \text {-as., for all } t \geq 0 .
$$
Since the filtration $\left(\mathcal{F}{t}\right)$ is augmented, each version of an $\left(\mathcal{F}{t}\right)$-adapted process is again $\left(\mathcal{F}_{t}\right)$-adapted.

The exceptional null set $\left[X_{t} \neq Y_{t}\right]$ in $(0)$ is allowed to depend on $t$. If this null set can be made independent of $t \geq 0$, that is, if there is a $P$-null set $N \subseteq \Omega$ such that $X_{t}(\omega)=Y_{t}(\omega)$, for all $\omega \in \Omega \backslash N$ and all $t \geq 0$, then we call the processes $X$ and $Y$ indistinguishable. Clearly $X$ and $Y$ are indistinguishable if and only if the paths $t \in[0, \infty) \mapsto X_{t}(\omega)$ and $t \in[0, \infty) \mapsto Y_{t}(\omega)$ are identical, for $P$-ae. $\omega \in \Omega$. These notions of equality agree for right continuous processes, to which mostly we shall confine our attention:


微积分作业代写calclulus代考|1 Lp-inequalities.

7.e.1 $L^{p}$-inequalities. Let $\left(X_{t}\right){0 \leq t \leq T}$ be a right continuous martingale and $S^{}=$ $\sup {0 \leq t \leq T}\left|X_{t}\right|$. Then
(a) $P\left(S^{
} \geq \lambda\right) \leq \lambda^{-p} E\left(\left|X_{T}\right|^{p}\right)$ for all $\lambda>0, p \geq 1$.
(b) $\left|S^{}\right|_{p} \leq \frac{p}{p-1}\left|X_{T}\right|_{p}$, for all $p>1$. Proof. Let $D \subseteq[0, T]$ be a countable dense subset with $T \in D$. Then $S^{}=$ $\sup {t \in D}\left|X{t}\right|, P$-as. Enumerate the set $D$ as $D=\left{t_{n}\right}_{n \geq 1}$. For $N \geq 1$, set $I_{N}=$ $\left{t_{1}, t_{2}, \ldots, t_{N}, T\right}, S_{N}^{}=\max {t \in I{N}}\left|X_{t}\right|$ and note that
$$
S_{N}^{
} \uparrow S^{}, \quad P \text {-as., as } N \uparrow \infty . $$ With the understanding that the index $t$ ranges through the elements of $I_{N}$ in increasing order, the finite sequence $\left(X_{t}\right){t \in I{N}}$ is a martingale. From 6 .b.2 we get
$$
P\left(S_{N}^{
} \geq \lambda\right) \leq \lambda^{-p} E\left(\left|X_{T}\right|^{p}\right), \quad \lambda>0, p \geq 1
$$
Let $N \uparrow \infty$. From $(0)$ it follows that $\left[S_{N}^{}>\lambda\right] \uparrow\left[S^{}>\lambda\right]$ on the complement of a null set. Here the use of strict inequalities is essential. Thus (1) yields
$$
P\left(S^{}>\lambda\right)=\lim {N \uparrow \infty} P\left(S{N}^{}>\lambda\right) \leq \lambda^{-p} E\left(\left|X_{T}\right|^{p}\right)
$$
Choose $\lambda_{n}>0$ such that $\lambda_{n}<\lambda$ and $\lambda_{n} \uparrow \lambda$, as $n \uparrow \infty$. (2) applied to $\lambda_{n}$ instead of $\lambda$ yields $$ P\left(S^{} \geq \lambda\right) \leq P\left(S^{}>\lambda_{n}\right) \leq\left(\lambda_{n}\right)^{-p} E\left(\left|X_{T}\right|^{p}\right)
$$
Letting $n \uparrow \infty$ now yields (a). 6.b.3 applied to the finite martingale sequence $\left(X_{t}\right){t \in I{N}}$ yields $\left|S_{N}^{}\right|_{p} \leq(p /(p-1))\left|X_{T}\right|_{p}$, for all $N \geq 1$. Let $N \uparrow$. Then $0 \leq S_{N}^{} \uparrow S^{}, P$-as., and so $\left|S_{N}^{}\right|_{p} \uparrow\left|S^{*}\right|_{p}$. This establishes (b).

随机微积分作业代写stochastic calculus代考| CONTINUOUS TIME MARTINGALES

微积分作业代写calclulus代考|Filtration, optional times, sampling.gue integrals

7.a.0 假设。概率空间(Ω,F,磷)完成过滤 $\left(\mathcal{F} {t}\right) {t \geq 0}○n(\Omega, \mathcal{F}, P)$ 右连续和增广。

增强消除了空集上的可测量性问题。让X=(X吨),和= (和吨),X(n)=(X吨(n))是随机过程(Ω,F,磷)索引为吨=[0,∞)和吨≥0. 如果X吨是 $\mathcal{F} {t}−米和一种s你r一种b一世和一种ndY {t}=X_{t}, P_{\text {-as. }},吨H和nY_{t}一世s\mathcal{F} {t}−米和一种s你r一种b一世和.一世一世到和在一世s和,一世FX {t}(n)一世s\mathcal{F} {t}−米和一种s你r一种b一世和,F○r一种一世一世n \ geq 1,一种ndX {t}(n) \rightarrow X_{t}, P−一种s.,一种sn \uparrow \infty,吨H和nX_{t}一世s\mathcal{F} {t}−米和一种s你r一种b一世和.一世F\欧米茄\中\欧米茄,吨H和F你nC吨一世○n$ t \in[0, \infty) \mapsto X {t}(\omega) \in \bar{R}
$$
称为路径X处于状态ω. 过程X被称为(右,左)连续如果X是 $\left(\mathcal{F} {t}\right)−一种d一种p吨和d一种nd磷−一种和.p一种吨H○FX一世sF一世n一世吨和一世和v一种一世你和d一种nd(r一世GH吨,一世和F吨)C○n吨一世n你○你s.一世和吨你sC一种一世一世吨H和pr○C和ss和sx-yv和rs一世○ns○F和一种CH○吨H和r一种nd在r一世吨和X=Y一世F吨H和和s一种吨一世sF和$ X {t}=Y_{t}, \quad P \text {-as., 对于所有 } t \geq 0 。
$$
自过滤 $\left(\mathcal{F} {t}\right)一世s一种你G米和n吨和d,和一种CHv和rs一世○n○F一种n\left(\mathcal{F} {t}\right)−一种d一种p吨和dpr○C和ss一世s一种G一种一世n\left(\mathcal{F}_{t}\right)$-适应。

异常空集[X吨≠和吨]在(0)允许依赖于吨. 如果这个空集可以独立于吨≥0,也就是说,如果有一个磷-空集ñ⊆Ω这样X吨(ω)=和吨(ω), 对所有人ω∈Ω∖ñ和所有吨≥0,然后我们调用进程X和和难以区分。清楚地X和和当且仅当路径是不可区分的吨∈[0,∞)↦X吨(ω)和吨∈[0,∞)↦和吨(ω)是相同的,因为磷-ae。ω∈Ω. 这些平等概念同意正确的连续过程,我们将主要关注这些:

微积分作业代写calclulus代考|1 Lp-inequalities.

7.e.1一世p-不平等。设 $\left(X_{t}\right) {0 \leq t \leq T}b和一种r一世GH吨C○n吨一世n你○你s米一种r吨一世nG一种一世和一种ndS^{}=\sup {0 \leq t \leq T}\left|X_{t}\right|.吨H和n(一种)P\left(S^{ } \geq \lambda\right) \leq \lambda^{-p} E\left(\left|X_{T}\right|^{p}\right)F○r一种一世一世\ λ > 0, p \ geq 1.(b)\left|S^{ }\right|_{p} \leq \frac{p}{p-1}\left|X_{T}\right|_{p},F○r一种一世一世p>1.磷r○○F.一世和吨D \subseteq[0, T]b和一种C○你n吨一种b一世和d和ns和s你bs和吨在一世吨HT \in D.吨H和nS^{ }=\sup {t \in D}\left|X {t}\right|, P−一种s.和n你米和r一种吨和吨H和s和吨D一种sD=\left{t_{n}\right}_{n \geq 1}.F○rN \ geq 1,s和吨我_{N}=\left{t_{1}, t_{2}, \ldots, t_{N}, T\right}, S_{N}^{ }=\max {t \in I{N}}\left|X_{ t}\对|一种ndn○吨和吨H一种吨$
S_{N}^{
 } \uparrow S^{ }, \quad P \text {-as., as } N \uparrow \infty 。在一世吨H吨H和你nd和rs吨一种nd一世nG吨H一种吨吨H和一世nd和X$吨$r一种nG和s吨Hr○你GH吨H和和一世和米和n吨s○F$一世ñ$一世n一世nCr和一种s一世nG○rd和r,吨H和F一世n一世吨和s和q你和nC和$(X吨)吨∈一世ñ$一世s一种米一种r吨一世nG一种一世和.Fr○米6.b.2在和G和吨
P\left(S_{N}^{
 } \geq \lambda\right) \leq \lambda^{-p} E\left(\left|X_{T}\right|^{p}\right), \四元 \lambda>0, p \geq 1
$$
让ñ↑∞. 从(0)它遵循 $\left[S_{N}^{ }>\lambda\right] \uparrow\left[S^{ }>\lambda\right]○n吨H和C○米p一世和米和n吨○F一种n你一世一世s和吨.H和r和吨H和你s和○Fs吨r一世C吨一世n和q你一种一世一世吨一世和s一世s和ss和n吨一世一种一世.吨H你s(1)和一世和一世ds$
P\left(S^{ }>\lambda\right)=\lim {N \uparrow \infty} P\left(S{N}^{ }>\lambda\right) \leq \lambda^{-p } E\left(\left|X_{T}\right|^{p}\right)
CH○○s和$λn>0$s你CH吨H一种吨$λn<λ$一种nd$λn↑λ$,一种s$n↑∞$.(2)一种pp一世一世和d吨○$λn$一世ns吨和一种d○F$λ$和一世和一世dsP\left(S^{ } \geq \lambda\right) \leq P\left(S^{ }>\lambda_{n}\right) \leq\left(\lambda_{n}\right)^{- p} E\left(\left|X_{T}\right|^{p}\right)
$$
让n↑∞现在产生(a)。6.b.3 应用于有限鞅序列 $\left(X_{t}\right) {t \in I {N}}和一世和一世ds\left|S_{N}^{ }\right|_{p} \leq(p /(p-1))\left|X_{T}\right|_{p},F○r一种一世一世N \ geq 1.一世和吨N \uparrow.吨H和n0 \leq S_{N}^{ } \uparrow S^{ }, P−一种s.,一种nds○\left|S_{N}^{ }\right|_{p} \uparrow\left|S^{*}\right|_{p}$。这确立了 (b)。

随机微积分作业代写stochastic calculus代考| CONTINUOUS TIME MARTINGALES
微积分作业代写calclulus代考

微积分作业代写calclulus代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

组合数学代考

统计作业代写

集合论数理逻辑代写案例

凸优化代写

统计exam代考