随机微积分作业代写stochastic calculus代考| ITO’S FORMULA

随机微积分作业代写stochastic calculus代考| ITO’S FORMULA

随机微积分(stochastic calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法

my-assignmentexpert™ 随机微积分stochastic calculus作业代写,免费提交作业要求, 满意后付款,成绩80\%以下全额退款,安全省心无顾虑。专业硕 博写手团队,所有订单可靠准时,保证 100% 原创。my-assignmentexpert™, 最高质量的随机微积分stochastic calculus作业代写,服务覆盖北美、欧洲、澳洲等 国家。 在代写价格方面,考虑到同学们的经济条件,在保障代写质量的前提下,我们为客户提供最合理的价格。 由于随机微积分stochastic calculus作业种类很多,难度波动比较大,同时其中的大部分作业在字数上都没有具体要求,因此随机微积分stochastic calculus作业代写的价格不固定。通常在经济学专家查看完作业要求之后会给出报价。作业难度和截止日期对价格也有很大的影响。

想知道您作业确定的价格吗? 免费下单以相关学科的专家能了解具体的要求之后在1-3个小时就提出价格。专家的 报价比上列的价格能便宜好几倍。

my-assignmentexpert™ 为您的留学生涯保驾护航 在经济学作业代写方面已经树立了自己的口碑, 保证靠谱, 高质且原创的微积分calculus代写服务。我们的专家在随机微积分stochastic calculus 代写方面经验极为丰富,各种随机微积分stochastic calculus相关的作业也就用不着 说。

我们提供的随机微积分stochastic calculus代写服务范围广, 其中包括但不限于:

  • 随机偏微分方程
  • 随机控制
  • Ito积分
  • black-Scholes-Merton option pricing formula
  • Fokker–Planck equation
  • 布朗运动 Brownian motion
随机微积分作业代写stochastic calculus代考

微积分作业代写calclulus代考|Leviís characterization of Brownian motion

3.e.0. Let $B_{t}=\left(B_{t}^{1}, B_{t}^{2} \ldots, B_{t}^{d}\right)$ be a Brownian motion on $\left(\Omega, \mathcal{F},\left(\mathcal{F}{t}\right), P\right)$. Then (a) $B{t}^{i} B_{t}^{j}$ is a martingale, for all $i \neq j$. (b) $\left\langle B^{i}, B^{j}\right\rangle=0$, for all $i \neq j$.
Proof. Each coordinate process $B_{t}^{j}$ is a one dimensional Brownian motion and hence a continuous, square integrable martingale (II.2.g.0). Especially $B_{t}^{j} \in L^{2}(P)$ and hence $B_{t}^{i} B_{t}^{j} \in L^{1}(P)$ for all $i, j$ and $t \geq 0$. The covariation $\left\langle B^{i}, B^{j}\right\rangle$ is the unique continuous, bounded variation process $A$ such that $A_{0}=0$ and $B^{i} B^{j}-A$ is a local martingale. Thus (b) follows from (a).

Let us now show (a). Assume that $i \neq j$. In order to see that $B_{t}^{i} B_{t}^{j}$ is a martingale we must show that $E_{P}\left[B_{t}^{i} B_{t}^{j}-B_{s}^{i} B_{s}^{j} \mid \mathcal{F}{s}\right]=0$. Write $$ B{t}^{i} B_{t}^{j}-B_{s}^{i} B_{s}^{j}=\left(B_{t}^{i}-B_{s}^{i}\right)\left(B_{t}^{j}-B_{s}^{j}\right)+B_{s}^{i}\left(B_{t}^{j}-B_{s}^{j}\right)+B_{s}^{j}\left(B_{t}^{i}-B_{s}^{i}\right)
$$
The first summand is a function of the increment $B_{t}-B_{s}$ and hence independent of the $\sigma$-field $\mathcal{F}{s}$. Since the two factors are themselves independent we obtain $$ \begin{aligned} E{P}\left[\left(B_{t}^{i}-B_{s}^{i}\right)\left(B_{t}^{j}-B_{s}^{j}\right) \mid \mathcal{F}{s}\right] &=E{P}\left[\left(B_{t}^{i}-B_{s}^{i}\right)\left(B_{t}^{j}-B_{s}^{j}\right)\right] \
&=E_{P}\left[B_{t}^{i}-B_{s}^{i}\right] E_{P}\left[B_{t}^{j}-B_{s}^{j}\right]=0
\end{aligned}
$$
Moreover the $\mathcal{F}{s}$-measurability of $B{s}^{i}, B_{s}^{j}$ implies that
$$
\begin{aligned}
&E_{P}\left[B_{s}^{i}\left(B_{t}^{j}-B_{s}^{j}\right) \mid \mathcal{F}{s}\right]=B{s}^{i} E_{P}\left[B_{t}^{j}-B_{s}^{j} \mid \mathcal{F}{s}\right]=0 \quad \text { and } \ &E{P}\left[B_{s}^{j}\left(B_{t}^{i}-B_{s}^{i}\right) \mid \mathcal{F}{s}\right]=B{s}^{j} E_{P}\left[B_{t}^{i}-B_{s}^{i} \mid \mathcal{F}{s}\right]=0 \end{aligned} $$ Conditioning on the $\sigma$-field $\mathcal{F}{s}$ in $(0)$ now yields $E_{P}\left[B_{t}^{i} B_{t}^{j}-B_{s}^{i} B_{s}^{j} \mid \mathcal{F}_{s}\right]=0$.

微积分作业代写calclulus代考|Harmonic functions of Brownian motion

3.f The multiplicative compensator $U_{X}$.
3.f.0. Let $X \in \mathcal{S}{+}$. Then there is a unique continuous bounded variation process $A$ such that $A{0}=1, A>0$ and $X_{t} / A_{t}$ is a local martingale. The process $A$ is called the multiplicative compensator of the semimartingale $X$ and denoted $A=U_{X}$. The relationship to the (additive) compensator $u_{X}$ of $X$ is as follows:
$$
U_{X}(t)=\exp \left(\int_{0}^{t} \frac{1}{X_{s}} d u_{X}(s)\right) \quad \text { and } \quad u_{X}(t)=\int_{0}^{t} X_{s} d \log \left(U_{X}(s)\right)
$$
Proof. Uniqueness. Here we will also see how to find such a process $A$. Assume that $A$ is a process with the above properties and set $Z=1 / A$. Since the continuous, positive bounded variation process $A$ is $P$-as. pathwise bounded away from zero on finite intervals, it follows that $Z=1 / A$ is itself a continuous bounded variation process with $Z_{0}=A_{0}=1$. Thus $\langle Z, X\rangle=0$ and $u_{Z}=Z$. As $Z X$ is a local martingale, $u_{Z X}=0$ and formula 3.c.3.(a) for the compensator $u_{Z X}$ yields
$$
0=d u_{Z X}(t)=X_{t} d Z_{t}+Z_{t} d u_{X}(t), \quad \text { that is, } \quad Z_{s}^{-1} d Z_{s}=-X_{s}^{-1} d u_{X}(s)
$$
Chapter III: Stochastic Integration 169
Since $Z$ is of bounded variation this can be rewritten as $d \log \left(Z_{s}\right)=-X_{s}^{-1} d u_{X}(s)$. Observing that $\log \left(Z_{0}\right)=0$ integration yields
$$
\log \left(Z_{t}\right)=-\int_{0}^{t} \frac{1}{X_{s}} d u_{X}(s) \quad \text { and so } \log \left(A_{t}\right)=-\log \left(Z_{t}\right)=\int_{0}^{t} \frac{1}{X_{s}} d u_{X}(s) .
$$
This shows that a process $A$ with the above properties must be given by the first formula in $(0)$. In particular $A$ is uniquely determined.
Existence. Set $A_{t}=\exp \left(\int_{0}^{t} X_{s}^{-1} d u_{X}(s)\right)$. We verify that $A$ has the desired properties. We merely have to reverse the considerations of (a) above. Clearly $A$ is a strictly positive, continuous bounded variation process with $A_{0}=1$. Set $Z=1 / A$. To show that $Z X$ is a local martingale note that it is a continuous semimartingale and $Z_{t}=\exp \left(-\int_{0}^{t} X_{s}^{-1} d u_{X}(s)\right)$ and thus $d \log \left(Z_{s}\right)=-X_{s}^{-1} d u_{X}(s)$. Since $Z$ is a bounded variation process, this can be rewritten as
$$
Z_{s}^{-1} d Z_{s}=-X_{s}^{-1} d u_{X}(s) \text { and so } \quad X_{s} d Z_{s}+Z_{s} d u_{X}(s)=0
$$
that is, $d u_{Z X}(s)=0$ and so $u_{Z X}=0$. Thus $Z X$ is a local martingale. It remains to verify the second equation in $(0)$, that is, $d u_{X}(t)=X_{t} d \log \left(U_{X}(t)\right)$. This follows at once from the first equation in $(0)$ upon taking the logarithm, differentiating and multiplying with $X_{t}$.

随机微积分作业代写stochastic calculus代考| ITO’S FORMULA

微积分作业代写calclulus代考|Leviís characterization of Brownian motion

3.e.0。让乙吨=(乙吨1,乙吨2…,乙吨d)成为一个布朗运动(Ω,F,(F吨),磷). 那么(一)乙吨一世乙吨j是鞅,对于所有人一世≠j. (二)⟨乙一世,乙j⟩=0, 对所有人一世≠j.
证明。每个坐标过程乙吨j是一维布朗运动,因此是一个连续的平方可积鞅 (II.2.g.0)。尤其乙吨j∈一世2(磷)因此乙吨一世乙吨j∈一世1(磷)对所有人一世,j和吨≥0. 协变⟨乙一世,乙j⟩是唯一的连续有界变化过程一种这样一种0=0和乙一世乙j−一种是局部鞅。因此(b)从(a)得出。

现在让我们展示(a)。假使,假设一世≠j. 为了看到那个乙吨一世乙吨j是鞅,我们必须证明和磷[乙吨一世乙吨j−乙s一世乙sj∣Fs]=0. 写乙吨一世乙吨j−乙s一世乙sj=(乙吨一世−乙s一世)(乙吨j−乙sj)+乙s一世(乙吨j−乙sj)+乙sj(乙吨一世−乙s一世)
第一个和是增量的函数乙吨−乙s因此独立于σ-场地Fs. 由于这两个因素本身是独立的,我们得到和磷[(乙吨一世−乙s一世)(乙吨j−乙sj)∣Fs]=和磷[(乙吨一世−乙s一世)(乙吨j−乙sj)] =和磷[乙吨一世−乙s一世]和磷[乙吨j−乙sj]=0
此外,Fs- 可测量性乙s一世,乙sj暗示
和磷[乙s一世(乙吨j−乙sj)∣Fs]=乙s一世和磷[乙吨j−乙sj∣Fs]=0 和  和磷[乙sj(乙吨一世−乙s一世)∣Fs]=乙sj和磷[乙吨一世−乙s一世∣Fs]=0调理在σ-场地Fs在(0)现在产量和磷[乙吨一世乙吨j−乙s一世乙sj∣Fs]=0.

微积分作业代写calclulus代考|Harmonic functions of Brownian motion

3.f乘法补偿器üX.
3.f.0。让X∈小号+. 则有一个独特的连续有界变分过程一种这样一种0=1,一种>0和X吨/一种吨是局部鞅。过程一种称为半鞅的乘法补偿器X并表示一种=üX. 与(加法)补偿器的关系你X的X如下:
üX(吨)=经验⁡(∫0吨1Xsd你X(s)) 和 你X(吨)=∫0吨Xsd日志⁡(üX(s))
证明。独特性。在这里我们还将看到如何找到这样的过程一种. 假使,假设一种是一个具有上述属性并设置的进程和=1/一种. 由于连续的、正的有界变化过程一种是磷-作为。在有限间隔上远离零的路径有界,它遵循和=1/一种本身就是一个连续的有界变化过程和0=一种0=1. 因此⟨和,X⟩=0和你和=和. 作为和X是局部鞅,你和X=0以及补偿器的公式 3.c.3.(a)你和X产量
0=d你和X(吨)=X吨d和吨+和吨d你X(吨), 那是, 和s−1d和s=−Xs−1d你X(s)
第三章:随机积分
169和是有界变化的,这可以重写为d日志⁡(和s)=−Xs−1d你X(s). 观察到日志⁡(和0)=0积分收益率
日志⁡(和吨)=−∫0吨1Xsd你X(s) 所以 日志⁡(一种吨)=−日志⁡(和吨)=∫0吨1Xsd你X(s).
这表明一个过程一种具有上述性质的必须由第一个公式给出(0). 特别是一种是唯一确定的。
存在。放一种吨=经验⁡(∫0吨Xs−1d你X(s)). 我们验证一种具有所需的属性。我们只需颠倒上述(a)的考虑即可。清楚地一种是一个严格正的、连续的有界变化过程一种0=1. 放和=1/一种. 为了表明和X是一个局部鞅注,它是一个连续的半鞅并且和吨=经验⁡(−∫0吨Xs−1d你X(s))因此d日志⁡(和s)=−Xs−1d你X(s). 自从和是一个有界变化过程,这可以重写为
和s−1d和s=−Xs−1d你X(s) 所以 Xsd和s+和sd你X(s)=0
那是,d你和X(s)=0所以你和X=0. 因此和X是局部鞅。还需要验证第二个方程(0), 那是,d你X(吨)=X吨d日志⁡(üX(吨)). 这立即从第一个方程得出(0)取对数、微分和乘以X吨.

随机微积分作业代写stochastic calculus代考| ITO’S FORMULA
微积分作业代写calclulus代考

微积分作业代写calclulus代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。

抽象代数Galois理论代写

偏微分方程代写成功案例

代数数论代考

组合数学代考

统计作业代写

集合论数理逻辑代写案例

凸优化代写

统计exam代考