简单的说,学好微积分(数学分析)是一个毁灭自己的先天直觉然后重新塑造一个后天直觉。
转变思维永远不是简单,但是不转变,贪图一时的捷径只是饮鸩止渴罢了。高中的时候,我一个同学很背单词的时候喜欢用汉字去拼那些单词的发音,还喜欢学各种解题技巧,这个时候我和他的成绩是一样的。
国外的老师较为看重学生homework的完成情况,对于同学们来说,完成一门科目作业并获得不错的成绩是尤为重要的事情。但对于不少同学来说,在自身英语说存在局限的情况下,当数学基础较为薄弱时,微积分作业的难度一下子就提升了,很难独立完成微积分作业。Calculus-do™提供的专业微积分代写能为大家解决所有的学术困扰,我们不仅会帮大家完成作业,还提供相应的数学知识辅导课程,以此来提高同学们学习能力。
我们提供的econ代写服务范围广, 其中包括但不限于:
- 单变量微积分
- 多变量微积分
- 傅里叶级数
- 黎曼积分
- ODE
- 微分学

微积分网课代修|AP微积分代写AP calculus辅导|TOPICS THAT MAY BE TESTED ON THE CALCULUS AB EXAM
- Functions and Graphs
Rational, trigonometric, inverse trigonometric, exponential, and logarithmic functions. - Limits and Continuity
Intuitive definitions; one-sided limits; functions becoming infinite; asymptotes and graphs; limit of a quotient; $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} ;$ estimating limits using tables or graphs.
Definition of continuity; kinds of discontinuities; theorems about continuous functions; Extreme Value and Intermediate Value Theorems.
- Differentiation
Definition of derivative as the limit of a difference quotient and as instantaneous rate of change; derivatives of power, exponential, logarithmic, trig and inverse trig functions; product, quotient, and chain rules; differentiability and continuity; estimating a derivative numerically and graphically; implicit differentiation; derivative of the inverse of a function; the Mean Value Theorem; recognizing a given limit as a derivative. - Applications of Derivatives
Rates of change: slope; critical points; average velocity; tangents and normals; increasing and decreasing functions; using the first and second derivatives for the following: local (relative) max or min, inflection points, curve sketching, global (absolute) max or min and optimization problems; relating a function and its derivatives graphically; motion along a line; local linearization and its use in approximating a function; related rates; differential equations and slope fields. - The Definite Integral
Definite integral as the limit of a Riemann sum; area; definition of definite integral; properties of the definite integral; Riemann sums using rectangles or sums using trapezoids; comparing approximating sums; average value of a function; Fundamental Theorem of Calculus; graphing a function from its derivative; estimating definite integrals from tables and graphs; accumulated change as integral of rate of change. - Integration
Antiderivatives and basic formulas; antiderivatives by substitution; applications of antiderivatives; differential equations; motion problems. - Applications of Integration to Geometry
Area of a region, including between two curves; volume of a solid of known cross section, including a solid of revolution. - Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a line; other applications involving the use of integrals of rates as net change or the use of integrals as accumulation functions; average value of a function over an interval. - Differential Equations
Basic definitions; geometric interpretations using slope fields; solving first-order separable differential equations analytically; exponential growth and decay.
微积分网课代修|AP微积分代写AP calculus辅导|TOPICS THAT MAY BE TESTED ON THE CALCULUS BC EXAM
Any of the topics listed above for the Calculus $\mathrm{AB}$ exam may be tested on the $\mathrm{BC}$ exam. The following additional topics are restricted to the $\mathrm{BC}$ exam.
Functions and Graphs
Parametrically defined functions; polar functions; vector functions.Limits and Continuity
No additional topics.
Differentiation
Derivatives of polar, vector, and parametrically defined functions; indeterminate forms; L’Hôpital’s rule.
Applications of Derivatives
Tangents to parametrically defined curves; slopes of polar curves; analysis of curves defined parametrically or in polar or vector form.
The Definite Integral
Integrals involving parametrically defined functions.
Integration
By parts; by partial fractions (involving nonrepeating linear factors only); improper integrals.
Applications of Integration to Geometry
Area of a region bounded by parametrically defined or polar curves; arc length.
Further Applications of Integration and Riemann Sums
Velocity and distance problems involving motion along a planar curve; velocity and acceleration vectors.
Differential Equations
Euler’s method; applications of differential equations, including logistic growth.
Sequences and Series
Definition of series as a sequence of partial sums and of its convergence as the limit of that sequence; harmonic, geometric, and p-series; integral, ratio, and comparison tests for convergence; alternating series and error bound; power series, including interval and radius of convergence; Taylor polynomials and graphs; finding a power series for a function; MacLaurin and Taylor series; Lagrange error bound for Taylor polynomials; computations using series.

微积分网课代修|AP微积分代写AP calculus辅导|TOPICS THAT MAY BE TESTED ON THE CALCULUS AB EXAM
- 函数和图形
有理函数、三角函数、反三角函数、指数函数和对数函数。 - 限制和连续性
直观的定义;片面限制;函数变得无限;渐近线和图表;商的限制;林一世→0罪一世一世;使用表格或图表估计限制。
连续性的定义;各种不连续性;关于连续函数的定理;极值和中值定理。
- 微分
导数的定义是差商的极限和瞬时变化率;幂函数、指数函数、对数函数、三角函数和反三角函数的导数;乘积、商和链式规则;可区分性和连续性;以数字和图形方式估计导数;隐分化; 函数逆的导数;中值定理;将给定的极限识别为导数。 - 衍生品
的应用 变化率:斜率;临界点;平均速度; 切线和法线;增加和减少功能;对以下问题使用一阶和二阶导数:局部(相对)最大值或最小值、拐点、曲线草图、全局(绝对)最大值或最小值以及优化问题;以图形方式关联函数及其导数;沿直线运动;局部线性化及其在逼近函数中的应用;相关费率;微分方程和斜率场。 - 定
积分作为黎曼和的极限的定积分;区域; 定积分的定义;定积分的性质;黎曼使用矩形求和或使用梯形求和;比较近似总和;函数的平均值;微积分基本定理;从其导数绘制函数;从表格和图表中估计定积分;累积变化作为变化率的积分。 - 积分
反衍生物和基本公式;替代抗衍生物;抗衍生物的应用;微分方程; 运动问题。 - 将积分应用于
区域的几何区域,包括两条曲线之间;已知横截面的实体的体积,包括旋转实体。 - 积分和黎曼和的进一步应用
涉及沿线运动的速度和距离问题;其他涉及将利率积分用作净变化或将积分用作累积函数的应用;一个函数在一个区间内的平均值。 - 微分方程
基本定义;使用坡度场的几何解释;解析求解一阶可分微分方程;指数增长和衰退。
微积分网课代修|AP微积分代写AP calculus辅导|TOPICS THAT MAY BE TESTED ON THE CALCULUS BC EXAM
微积分上面列出的任何主题一个乙考试可能会在乙C考试。以下附加主题仅限于乙C考试。
函数和图形
参数定义的函数;极性函数;向量函数。极限和连续性
没有额外的话题。
差异化
极坐标、向量和参数定义函数的导数;不确定的形式;L’Hôpital 的规则。
衍生品的应用
参数定义曲线的切线;极曲线的斜率;分析以参数或极坐标或矢量形式定义的曲线。
定积分
涉及参数定义函数的积分。
一体化
按零件;通过部分分数(仅涉及非重复线性因子);不正确的积分。
几何积分的应用
由参数定义或极曲线界定的区域面积;弧长。
积分和黎曼和的进一步应用
涉及沿平面曲线运动的速度和距离问题;速度和加速度向量。
微分方程
欧拉方法;微分方程的应用,包括逻辑增长。
序列和系列
将级数定义为部分和的序列,并将其收敛性定义为该序列的极限;谐波、几何和 p 系列;用于收敛的积分、比率和比较测试;交替序列和误差界;幂级数,包括收敛区间和半径;泰勒多项式和图;找到函数的幂级数;麦克劳林和泰勒系列;泰勒多项式的拉格朗日误差界;使用系列计算。


微积分网课代修|AP微积分代写AP calculus辅导 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。