简单的说,学好微积分(数学分析)是一个毁灭自己的先天直觉然后重新塑造一个后天直觉。
转变思维永远不是简单,但是不转变,贪图一时的捷径只是饮鸩止渴罢了。高中的时候,我一个同学很背单词的时候喜欢用汉字去拼那些单词的发音,还喜欢学各种解题技巧,这个时候我和他的成绩是一样的。
国外的老师较为看重学生homework的完成情况,对于同学们来说,完成一门科目作业并获得不错的成绩是尤为重要的事情。但对于不少同学来说,在自身英语说存在局限的情况下,当数学基础较为薄弱时,微积分作业的难度一下子就提升了,很难独立完成微积分作业。Calculus-do™提供的专业微积分代写能为大家解决所有的学术困扰,我们不仅会帮大家完成作业,还提供相应的数学知识辅导课程,以此来提高同学们学习能力。
我们提供的econ代写服务范围广, 其中包括但不限于:
- 单变量微积分
- 多变量微积分
- 傅里叶级数
- 黎曼积分
- ODE
- 微分学

微积分作业代写calclulus代考|The General Newton integral
The version of the Newton integral promoted in this chapter can be described this loose way:
We write
$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$
provided that we can determine a continuous function $F:[a, b] \rightarrow \mathbb{R}$ so that $F^{\prime}(x)=f(x)$ at all but a negligible set of points in $(a, b)$.
By negligible here we mean the set of points $X$ where the identity $F^{\prime}(x)=f(x)$ might fail or simply be unknown can be written as a sequence. The justification, again in loose language is this:
a continuous function $F:[a, b] \rightarrow \mathbb{R}$ cannot grow on a negligible set of points $e_{1}, e_{2}, e_{3}, \ldots$
By the early twentieth century it was recognized that a larger class of negligible sets was needed for many problems. The class of sets that we might need to neglect are called the null sets. A null set is small in certain senses, but might be too large to be written out as a sequence of points. It turns out that while continuous functions do not grow on sequences of points, they might grow on null sets. Thus the definition of the Newton integral requires both a relaxation in the class of sets to be neglected and a tightening of the requirement on the function $F$. The definition of the modern version of the Newton integral is this:
We write
$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$
meaning that there is a continuous function $F:[a, b] \rightarrow \mathbb{R}$ so that:
(a) There is a null set $N$,
(b) $F^{\prime}(x)=f(x)$ for all $x$ in $(a, b)$ except possibly for $x$ in the null set $N$, and
(c) this function $F$ does not grow on the negligible set $N$.
This integral is properly defined as a Newton integral in Chapter 3 . An equivalent constructive definition is given in Chapter 4. A measure-theoretic account is given in Chapter 5 . This is the correct integral for the calculus.
微积分作业代写calclulus代考|First mean-value theorem for integrals
The original Newton integral, the student will recall, requires of indefinite integrals that the derivative requirement holds at every point (no exceptional set is allowed). Let us return to that briefly.
How can we determine the value of a definite integral
$$
\int_{a}^{b} f(x) d x
$$
for a function $f$ ? According to the definition we need to find an indefinite integral $F$ first and then compute $F(b)-F(a)$. Finding an indefinite integral may be a much harder task than simply evaluating this single number $F(b)-F(a)$.
The mean value theorem for derivatives gives a hint. According to that theorem
$$
F(b)-F(a)=f(\xi)(b-a)
$$
for at least one point $\xi$ in $(a, b)$. That gives the identity
$$
\int_{a}^{b} f(x) d x=f(\xi)(b-a)
$$
but we do not know precisely which point $\xi$ to choose. This result is called the first mean-value theorem for the integral; we see it is available for the narrowest version of the Newton integral, the one where the indefinite integral $F$ has the integrand $f$ as its derivative at every point inside the interval.
This relation between an interval $[a, b]$ and some selected point $\xi$ is called a covering relation. While the covering relation suggested by the first mean-value theorem for integrals is a useful one it cannot be made the basis for defining an integral.

微积分作业代写calclulus代考|The General Newton integral
本章介绍的牛顿积分版本可以这样松散地描述:
我们写
$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$
前提是我们可以确定一个连续函数 $F:[a, b] \rightarrow \mathbb{R}$ 以便 $F^{\prime}(x)=f(x)$ 根本就是一组 可以忽略不计的点 $(a, b)$.
这里的可忽略是指点的集合 $X$ 身份在哪里 $F^{\prime}(x)=f(x)$ 可能会失败或只是末知,可以 写成一个序列。用松散的语言来证明是这样的:
连续函数 $F:[a, b] \rightarrow \mathbb{R}$ 不能在可忽略的点集上增长 $e_{1}, e_{2}, e_{3}, \ldots$
到 20 世纪初,人们认识到许多问题需要更大的可忽略集类别。我们可能需要忽略的那
类集合称为空集。空集在某些意义上很小,但可能太大而无法写成点序列。事实证明,
虽然连续函数不会在点序列上增长,但它们可能会在空集上增长。因此,牛顿积分的定
义既需要放宽要忽略的集合类,又需要收紧对函数的要求 $F$. 现代版牛顿积分的定义是
这样的:
我们写
$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$
意思是有一个连续的函数 $F:[a, b] \rightarrow \mathbb{R}$ 所以:
(a) 有一个空集 $N$ ,
(b) $F^{\prime}(x)=f(x)$ 对所有人 $x$ 在 $(a, b)$ 除了可能 $x$ 在零集中 $N$, 和
(c) 这个函数 $F$ 在可忽略的集合上不增长 $N$.
这个积分在第 3 章中被恰当地定义为牛顿积分。第 4 章给出了等效的建设性定义。第 5 章给出了测度理论说明。这是微积分的正确积分。
微积分作业代写calclulus代考|First mean-value theorem for integrals
\
学生会记得,最初的牛顿积分需要导数要求在每个点都成立的不定积分(不允许例外
集)。让我们简要地回到这一点。
我们如何确定定积分的值
$$
\int_{a}^{b} f(x) d x
$$
对于一个函数 $f$ ? 根据定义我们需要找到一个不定积分 $F$ 先计算再计算 $F(b)-F(a)$.
找到一个不定积分可能比简单地评估这个数字要困难得多 $F(b)-F(a)$.
导数的中值定理给出了提示。根据那个定理
$$
F(b)-F(a)=f(\xi)(b-a)
$$
至少一分 $\xi$ 在 $(a, b)$. 这给出了身份
$$
\int_{a}^{b} f(x) d x=f(\xi)(b-a)
$$
但我们不知道究竟是哪一点 $\xi$ 选择。这个结果称为积分的第一中值定理;我们看到它适 用于牛顿积分的最寉版本,即不定积分 $F$ 有被积函数 $f$ 作为它在区间内每个点的导数。
区间之间的这种关系 $[a, b]$ 和一些选定的点 $\xi$ 称为覆盖关系。虽然积分的第一中值定理所 建议的覆盖关系是有用的,但它不能作为定义积分的基础。


微积分作业代写calclulus代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。