简单的说,学好微积分(数学分析)是一个毁灭自己的先天直觉然后重新塑造一个后天直觉。
转变思维永远不是简单,但是不转变,贪图一时的捷径只是饮鸩止渴罢了。高中的时候,我一个同学很背单词的时候喜欢用汉字去拼那些单词的发音,还喜欢学各种解题技巧,这个时候我和他的成绩是一样的。
国外的老师较为看重学生homework的完成情况,对于同学们来说,完成一门科目作业并获得不错的成绩是尤为重要的事情。但对于不少同学来说,在自身英语说存在局限的情况下,当数学基础较为薄弱时,微积分作业的难度一下子就提升了,很难独立完成微积分作业。Calculus-do™提供的专业微积分代写能为大家解决所有的学术困扰,我们不仅会帮大家完成作业,还提供相应的数学知识辅导课程,以此来提高同学们学习能力。
我们提供的econ代写服务范围广, 其中包括但不限于:
- 单变量微积分
- 多变量微积分
- 傅里叶级数
- 黎曼积分
- ODE
- 微分学

微积分网课代修|常微分方程代写Ordinary Differential Equation代考|Polar Coordinates
There are several special “coordinate systems” that are important in the analysis of differential equations, especially, polar coordinates, cylindrical coordinates, and spherical coordinates. In this section we will consider the meaning of these coordinates in the language of differentiable manifolds, and we will also explore a few applications, especially blowup of a rest point and compactification at infinity. However, the main purpose of this section is to provide a deeper understanding and appreciation for the manifold concept in the context of the study of differential equations.
What are polar coordinates?
Perhaps the best way to understand the meaning of polar coordinates is to recall the “angular wrapping function” definition of angular measure from elementary trigonometry. We have proved that the unit circle $\mathbb{T}$ is a one-dimensional manifold. The wrapping function $P: \mathbb{R} \rightarrow \mathbb{T}$ is given by
$$
P(\theta)=(\cos \theta, \sin \theta) .
$$
微积分网课代修|常微分方程代写Ordinary Differential Equation代考|Compactification at Infinity
The orbits of a differential equation on $\mathbb{R}^{n}$ may be unbounded. One way to obtain some information about the behavior of such solutions is to (try to) compactify the Cartesian space, so that the vector field is extended to a new manifold that contains the “points at infinity.” This idea, due to Henri Poincaré [143], has been most successful in the study of planar systems given by polynomial vector fields, also called polynomial systems (see $[5$, p. 219] and [76]). In this section we will give a brief description of the compactification process for such planar systems. We will again use the manifold concept and the idea of reparametrization.
Let us consider a plane vector field, which we will write in the form
$$
\dot{x}=f(x, y), \quad \dot{y}=g(x, y) .
$$

微积分网课代修常微分方程代写Ordinary Differential Equation代 考|Polar Coordinates
有几个特殊的“坐标系”在微分方程的分析中很重要,特别是极坐标、柱坐标和球坐标。 在本节中,我们将考虑这些坐标在可微流形语言中的含义,我们还将探讨一些应用,特 别是静止点的爆炸和无穷远处的紧化。然而,本节的主要目的是在微分方程研究的背景 下提供对流形概念的更深入理解和欣赏。
什么是极坐标?
也许理解极坐标含义的最好方法是回忆初等三角学中角度测量的“角度环绕函数”定义。 我们证明了单位圆 $\mathbb{T}$ 是一维流形。包装函数 $P: \mathbb{R} \rightarrow \mathbb{T}$ 是 (谁) 给的
$$
P(\theta)=(\cos \theta, \sin \theta) .
$$
微积分网课代修|常微分方程代写Ordinary Differential Equation代 考 Compactification at Infinity
微分方程的轨道 $\mathbb{R}^{n}$ 可能是无界的。获得有关此类解决方案行为的一些信息的一种方法 是(尝试)紧缩笛卡尔空间,以便将向量场扩展到包含“无穷远点”的新流形。这个想 法,由于 Henri Poincaré [143],在由多项式向量场给出的平面系统的研究中最为成 功,也称为多项式系统 (参见[5,页。219]和[76])。在本节中,我们将简要描述此类 平面系统的紧化过程。我们将再次使用流形概念和重新参数化的思想。
让我们考虑一个平面矢量场,我们将其写成
$$
\dot{x}=f(x, y), \quad \dot{y}=g(x, y)
$$


微积分网课代修|常微分方程代写Ordinary Differential Equation代考 请认准UprivateTA™. UprivateTA™为您的留学生涯保驾护航。