# 微积分网课代修|偏微分方程代写Partial Differential Equation代考|MATH480 Three Elements of Geometry

• 单变量微积分
• 多变量微积分
• 傅里叶级数
• 黎曼积分
• ODE
• 微分学

## 微积分网课代修|偏微分方程代写Partial Differential Equation代考|Three Elements of Geometry

For basic information on 2-D geometry construction, see “Create 2-D Geometry” on page 2-17

To describe your geometry through Constructive Solid Geometry (CSG) modeling, use three data structures.
1 “Create Basic Shapes” on page 2-19 A matrix whose columns describe the basic shapes. When you export geometry from the PDE app, this matrix has the default name gd (geometry description).
2 “Create Names for the Basic Shapes” on page 2-21 A matrix whose columns contain names for the basic shapes. Pad the columns with zeros or 32 (blanks) so that every column has the same length.
3 “Set Formula” on page 2-22 A string describing the unions, intersections, and set differences of the basic shapes that make the geometry.

## 微积分网课代修|偏微分方程代写Partial Differential Equation代考|Create Names for the Basic Shapes

In order to create a formula describing the unions and intersections of basic shapes, you need a name for each basic shape. Give the names as a matrix whose columns contain the names of the corresponding columns in the basic shape matrix. Pad the columns with 0 or 32 if necessary so that each has the same length.

One easy way to create the names is by specifying a character array whose rows contain the names, and then taking the transpose. Use the char function to create the array. char pads the rows as needed so all have the same length. Continuing the example,
\% Give names for the three shapes
$\mathrm{ns}=\operatorname{char}($ rect1, $\mathrm{C} 1, \mathrm{C} 2) ;$
$\mathrm{ns}=\mathrm{ns} ;$

## 微积分网课代修|偏微分方程代写Partial Differential Equation代考|Three Elements of Geometry

1 “创建基本形状”（第 2-19 页） 其列描述基本形状的矩阵。当您从 PDE 应用程序导出几何图形时，此矩阵具有默认名称 gd（几何图形描述）。
2 “为基本形状创建名称”（第 2-21 页） 一个矩阵，其列包含基本形状的名称。用零或 32（空白）填充列，以使每列具有相同的长度。
3 “设置公式”（第 2-22 页） 描述构成几何的基本形状的并集、交集和集差的字符串。

\% 为三个形状命名
ns=字符⁡(对1C1,C2);
ns=ns;