# 微积分网课代修|偏微分方程代写Partial Differential Equation代考|TMA026/MMA430 Required Syntax

• 单变量微积分
• 多变量微积分
• 傅里叶级数
• 黎曼积分
• ODE
• 微分学

## 微积分网课代修|偏微分方程代写Partial Differential Equation代考|Required Syntax

A geometry function describes the curves that bound the geometry regions. A curve is a parametrized function $(x(t), y(t))$. The variable $t$ ranges over a fixed interval. For best results, $t$ should be proportional to arc length plus a constant.
For each region you should have at least two curves. For example, the circleg geometry function, which ships with the toolbox, uses four curves to describe a circle.
Curves can intersect only at the beginning or end of parameter intervals.
Toolbox functions query your geometry function by passing in 0,1 , or 2 arguments. Conditionalize your geometry function based on the number of input arguments to return the following:

## 微积分网课代修|偏微分方程代写Partial Differential Equation代考|Relation Between Parameterization and Region Labels

This figure shows how the direction of parameter increase relates to label numbering. The arrows in the following figure show the directions of increasing parameter values. The black dots indicate curve beginning and end points. The red numbers indicate region labels. The red 0 in the center of the figure indicates that the center square is a hole.

• The arrows by curves 1 and 2 show region 1 to the left and region 0 to the right.
• The arrows by curves 3 and 4 show region 0 to the left and region 1 to the right.
• The arrows by curves 5 and 6 show region 0 to the left and region 1 to the right.
• The arrows by curves 7 and 8 show region 1 to the left and region 0 to the right.

## 微积分网课代修|偏微分方程代写Partial Differential Equation代考|Relation Between Parameterization and Region Labels

• 曲线 1 和 2 的箭头表示左侧的区域 1 和右侧的区域 0。
• 曲线 3 和 4 的箭头表示左侧的区域 0 和右侧的区域 1。
• 曲线 5 和 6 的箭头表示左侧的区域 0 和右侧的区域 1。
• 曲线 7 和 8 的箭头表示左侧的区域 1 和右侧的区域 0。